Enhanced Cell-Centered Finite Differences for Elliptic Equations on General Geometry

نویسندگان

  • Todd Arbogast
  • Clint Dawson
  • Philip T. Keenan
  • Mary F. Wheeler
  • Ivan Yotov
چکیده

We present an expanded mixed finite element method for solving second-order elliptic partial differential equations on geometrically general domains. For the lowest-order Raviart–Thomas approximating spaces, we use quadrature rules to reduce the method to cell-centered finite differences, possibly enhanced with some face-centered pressures. This substantially reduces the computational complexity of the problem to a symmetric, positive definite system for essentially only as many unknowns as elements. Our new method handles general shape elements (triangles, quadrilaterals, and hexahedra) and full tensor coefficients, while the standard mixed formulation reduces to finite differences only in special cases with rectangular elements. As in other mixed methods, we maintain the local approximation of the divergence (i.e., local mass conservation). In contrast, Galerkin finite element methods facilitate general element shapes at the cost of achieving only global mass conservation. Our method is shown to be as accurate as the standard mixed method for a large class of smooth meshes. On nonsmooth meshes or with nonsmooth coefficients one can add Lagrange multiplier pressure unknowns on certain element edges or faces. This enhanced cell-centered procedure recovers full accuracy, with little additional cost if the coefficients or mesh geometry are piecewise smooth. Theoretical error estimates and numerical examples are given, illustrating the accuracy and efficiency of the methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of a Cell-centered Finite Volume Method and Application to Elliptic Equations

We study the consistency and convergence of the cell-centered Finite Volume (FV) external approximation of H 0 (Ω), where a 2D polygonal domain Ω is discretized by a mesh of convex quadrilaterals. The discrete FV derivatives are defined by using the so-called Taylor Series Expansion Scheme (TSES). By introducing the Finite Difference (FD) space associated with the FV space, and comparing the FV...

متن کامل

Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

A cell conservative flux recovery technique is developed here for vertexcentered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests ...

متن کامل

An Optimal Order Process for Solving Finite Element Equations

A ¿-level iterative procedure for solving tbe algebraic equations which arise from the finite element approximation of elliptic boundary value problems is presented and analyzed. The work estimate for this procedure is proportional to the number of unknowns, an optimal order result. General geometry is permitted for the underlying domain, but the shape plays a role in the rate of convergence th...

متن کامل

Mixed Finite Elements for Elliptic Problems with Tensor Coeecients as Cell-centered Finite Diierences Mixed Finite Elements for Elliptic Problems with Tensor Coefficients as Cell-centered Finite Differences

We present an expanded mixed nite element approximation of second order elliptic problems containing a tensor coeecient. The mixed method is expanded in the sense that three variables are explicitly approximated, namely, the scalar unknown, the negative of its gradient, and its ux (the tensor coeecient times the negative gradient). The resulting linear system is a saddle point problem. In the c...

متن کامل

Stochastic finite differences for elliptic diffusion equations in stratified domains

We describe Monte Carlo algorithms to solve elliptic partial differential equations with piecewise constant diffusion coefficients and general boundary conditions including Robin and transmission conditions as well as a damping term. The treatment of the boundary conditions is done via stochastic finite differences techniques which possess an higher order than the usual methods. The simulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 19  شماره 

صفحات  -

تاریخ انتشار 1998